organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(R)-Methyl 2-(furan-2-carboxamido)-4-methylpentanoate

Wen-Jie Xu,^b Xiao-Jian Liao,^a Shi-Hai Xu^{a*} and Po-Run Liu^a

^aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China, and ^bInstitute of Hydrobiology, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China Correspondence e-mail: txush@jnu.edu.cn

Received 14 June 2007; accepted 25 July 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.049; wR factor = 0.134; data-to-parameter ratio = 10.1.

The title compound, C₁₂H₁₇NO₄, was synthesized by the condensation reaction of L-leucine methyl ester with furan-2carbonyl chloride at room temperature. There are two molecules in the asymmetric unit. All bond lengths and angles are within normal ranges. Intermolecular N-H···O interactions link the molecules to form one-dimensional polymeric chains along the c axis.

Related literature

For related literature, see: El-Naggar et al. (1976); Gomis-Ruth et al. (1998); Wipf & Halter (2005); Zeng & Liu (2005).

Experimental

Crystal data C12H17NO4 $M_r = 239.27$ Orthorhombic, P212121

a = 8.7674 (10) Åb = 16.1703 (18) Å c = 18.224 (2) Å

V = 2583.6 (5) Å³ 7 - 8Mo $K\alpha$ radiation

Data collection

Bruker SMART 1000 CCD aeadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.957, T_{\max} = 0.982$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.134$ S = 1.053189 reflections 315 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O6^{i}$ $N2 - H2 \cdots O2$ $N2 - H2 \cdots O5$	0.88	2.16	2.994 (3)	159
	0.88	2.00	2.847 (3)	162
	0.83	2.42	2.751 (4)	105

 $\mu = 0.09 \text{ mm}^{-1}$

T = 173 (2) K

 $R_{\rm int} = 0.024$

3 restraints

 $\Delta \rho_{\rm max} = 0.67 \text{ e } \text{\AA}^-$

 $\Delta \rho_{\rm min}$ = -0.21 e Å⁻³

 $0.50 \times 0.40 \times 0.20 \text{ mm}$

13310 measured reflections

3189 independent reflections

2685 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry code: (i) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

This work was supported by grants from the National High Technology Development Project (863 Project) (grant Nos. 2006 A A09Z408 GDSFC 06025194, 2005 A30503001 and 2006Z3-E4041).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2093).

References

- Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madinson, Wisconsin, USA.
- El-Naggar, A. M., Abdel-Rahman, M. O. & Makhlouf, A. A. (1976). Rocz. Chem. 50, 2175-2180.
- Gomis-Ruth, F. X., Meyer, E. F., Kress, L. F. & Politi, V. (1998). Protein Sci. 7, 283_292
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wipf, P. & Halter, R. J. (2005). Org. Biomol. Chem. 3, 2053-2061.
- Zeng, X.-C. & Liu, P.-R. (2005). Acta Cryst. E61, 03726-03727.

Acta Cryst. (2007). E63, o3644 [doi:10.1107/S1600536807036410]

(R)-Methyl 2-(furan-2-carboxamido)-4-methylpentanoate

W.-J. Xu, X.-J. Liao, S.-H. Xu and P.-R. Liu

Comment

Furan derivatives are well known in many organisms (Wipf *et al.*, 2005), and some of them are bioactive substances (Gomis-Ruth *et al.*, 1998). In our search for bioactive compounds, a series of furan(2-carbonyl)amino acid esters, including the title compound, (I), have been synthesized by the reaction of amino acid esters with Furan-2-carbonyl chloride. We report here its crystal structure. Bond lengths and angles are unexceptional and are in good agreement with the corresponding values in (*S*)-Methyl 4-methyl-2-(1*H*-pyrrole-2-carboxamido)-pentanoate (Zeng & Liu, 2005) and 1-(4-methoxyphenyl)-3-(3-methyl-2-furan-carbonyl)-thiourea (Hritzova *et al.*, 2005). There are two molecules in the asymmetric unit (Fig. 1) and only one kind of intermolecular hydrogen bonds in the crystal structure. Every molecule is connected with two other molecules by hydrogen-bond interactions, generating extended chains along the *c* axis, Figure 2.

Experimental

The synthesis of (I) was reported by El-Naggar *et al.*,1976. A solution of Furan-2-carbonyl chloride (0.66 g, 5 mmol) in dichloromethane (2.5 ml) was added dropwise, under stirring, to *L*-leucine methyl ester (0.91 g, 5 mmol) in dichloromethane (5 ml). The mixture was stirred at room temperature for 2 h and then poured into water. After filtration, the solution was wash with water(5 ml), The organic phase was dried over Na₂SO₄ and evaporated under reduced pressure. The residue was dissolved in ethanol at room temperature. Colorless orthorhombic crystals suitable for X-ray analysis (m.p. 362 K, 81.6 percent yield) grew over a period of one week when the solution was exposed to air.

Refinement

Hydrogen atoms attached to C or N atoms were located at geometrically calculated positions [0.95 (CH), 0.99 (CH₂), 0.98 (CH₃), 0.88 (NH)] and refined with isotropic thermal parameters $U_{iso}(H)$ equal to 1.2 for CH₂, CH, and NH, 1.5 for CH₃ $U_{eq}(C \text{ atoms})$. The highest positive and negative electron-density residuals are located 0.93 and 0.84Å from C14 and C23 respectively.

Figures

Fig. 1. The molecular structure of the title compound.

Fig. 2. The crystal structure of (I), viewed along the *a* axis. Dashed lines show N—H···O interactions. [Symmetry code: (i) -x + 1/2, -y + 1, z - 1/2]

(R)-Methyl 2-(furan-2-carboxamido)-4-methylpentanoate

Crystal data	
C ₁₂ H ₁₇ NO ₄	$D_{\rm x} = 1.230 {\rm ~Mg~m}^{-3}$
$M_r = 239.27$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Orthorhombic, $P2_12_12_1$	Cell parameters from 13310 reflections
a = 8.7674 (10) Å	$\theta = 12 - 18^{\circ}$
<i>b</i> = 16.1703 (18) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 18.224 (2) Å	T = 173 (2) K
$V = 2583.6 (5) \text{ Å}^3$	Block, colourless
Z = 8	$0.50\times0.40\times0.20\ mm$
$F_{000} = 1024$	

Data collection

Bruker SMART 1000 CCD aea-detector diffractometer	3189 independent reflections
Radiation source: fine-focus sealed tube	2685 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 293(2) K	$\theta_{max} = 27.1^{\circ}$
ω scans	$\theta_{\min} = 2.5^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 11$
$T_{\min} = 0.957, T_{\max} = 0.982$	$k = -13 \rightarrow 20$
13310 measured reflections	<i>l</i> = −23→22

Refinement

Refinement on F^2	H-atom pa
Least-squares matrix: full	$w = 1/[\sigma^2]$ where $P =$
$R[F^2 > 2\sigma(F^2)] = 0.049$	$(\Delta/\sigma)_{\rm max}$ <

 $R[F^{2} > 2\sigma(F^{2})] = 0.049$ wR(F²) = 0.134 S = 1.05 H-atom parameters constrained

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0652P)^2 + 1.1602P] \\ &\text{where } P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\text{max}} < 0.001 \\ &\Delta\rho_{\text{max}} = 0.67 \text{ e } \text{\AA}^{-3} \\ &\Delta\rho_{\text{min}} = -0.21 \text{ e } \text{\AA}^{-3} \end{split}$$

3189 reflections

315 parameters

Extinction correction: SHELXL97 (Sheldrick, 1997), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0046 (9)

3 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.1237 (3)	0.61581 (14)	0.45097 (12)	0.0445 (5)
O2	0.4018 (3)	0.58090 (14)	0.58910 (11)	0.0404 (5)
O3	0.6183 (3)	0.55287 (14)	0.44903 (13)	0.0461 (6)
O4	0.7289 (3)	0.45796 (17)	0.52091 (19)	0.0665 (9)
O5	0.2261 (3)	0.46393 (17)	0.69428 (15)	0.0632 (8)
O6	0.3297 (3)	0.56474 (14)	0.86200 (11)	0.0434 (5)
O7	0.2604 (3)	0.74834 (16)	0.72373 (15)	0.0574 (7)
O8	0.4538 (3)	0.81196 (13)	0.78045 (15)	0.0531 (7)
N1	0.3328 (3)	0.49843 (15)	0.49519 (14)	0.0319 (5)
H1	0.2638	0.4855	0.4621	0.038*
N2	0.3946 (3)	0.59578 (14)	0.74474 (13)	0.0328 (5)
H2	0.3900	0.5799	0.6986	0.039*
C1	0.2009 (3)	0.62688 (18)	0.51507 (16)	0.0336 (6)
C2	0.1566 (4)	0.6981 (2)	0.5477 (2)	0.0490 (8)
H2A	0.1927	0.7201	0.5928	0.059*
C3	0.0452 (5)	0.7331 (2)	0.5007 (3)	0.0592 (10)
Н3	-0.0078	0.7837	0.5080	0.071*
C4	0.0290 (5)	0.6822 (2)	0.4449 (2)	0.0573 (10)
H4	-0.0400	0.6907	0.4054	0.069*
C5	0.3179 (3)	0.56685 (18)	0.53628 (14)	0.0305 (6)
C6	0.4648 (3)	0.44653 (18)	0.50666 (16)	0.0332 (6)
H6	0.4681	0.4293	0.5593	0.040*
C7	0.6099 (4)	0.49425 (19)	0.48859 (18)	0.0382 (7)
C8	0.8780 (5)	0.4917 (3)	0.5032 (3)	0.0790 (15)

H8A	0.8984	0.4840	0.4508	0.118*
H8B	0.9563	0.4630	0.5319	0.118*
H8C	0.8799	0.5508	0.5149	0.118*
C9	0.4580 (3)	0.36901 (17)	0.45842 (17)	0.0345 (6)
H9A	0.4396	0.3865	0.4071	0.041*
H9B	0.5590	0.3417	0.4599	0.041*
C10	0.3368 (4)	0.30551 (18)	0.47946 (16)	0.0359 (7)
H10	0.2353	0.3337	0.4812	0.043*
C11	0.3688 (5)	0.2675 (2)	0.5542 (2)	0.0537 (9)
H11A	0.2890	0.2271	0.5660	0.081*
H11B	0.3699	0.3110	0.5916	0.081*
H11C	0.4681	0.2397	0.5532	0.081*
C12	0.3321 (5)	0.2390 (2)	0.4208 (2)	0.0516 (9)
H12A	0.3141	0.2645	0.3728	0.077*
H12B	0.2495	0.2000	0.4317	0.077*
H12C	0.4296	0.2093	0.4200	0.077*
C13	0.2279 (3)	0.48155 (17)	0.76822 (17)	0.0346 (6)
C14	0.1322 (5)	0.4294 (3)	0.8043 (2)	0.0664 (12)
H14	0.1096	0.4271	0.8552	0.080*
C15	0.0722 (4)	0.3773 (2)	0.7445 (3)	0.0614 (11)
H15	0.0015	0.3333	0.7503	0.074*
C16	0.1313 (5)	0.4012 (3)	0.6822 (3)	0.0745 (13)
H16	0.1100	0.3776	0.6356	0.089*
C17	0.3217 (3)	0.55087 (17)	0.79574 (15)	0.0314 (6)
C18	0.4802 (3)	0.66905 (16)	0.76288 (15)	0.0308 (6)
H18	0.5107	0.6656	0.8157	0.037*
C19	0.3825 (4)	0.74590 (18)	0.75269 (16)	0.0362 (6)
C20	0.3752 (5)	0.8901 (2)	0.7729 (3)	0.0628 (11)
H20A	0.3565	0.9013	0.7208	0.094*
H20B	0.4381	0.9344	0.7936	0.094*
H20C	0.2777	0.8876	0.7991	0.094*
C21	0.6249 (4)	0.67787 (17)	0.71650 (17)	0.0355 (6)
H21A	0.5948	0.6845	0.6645	0.043*
H21B	0.6784	0.7291	0.7315	0.043*
C22	0.7360 (4)	0.60601 (19)	0.72204 (19)	0.0413 (7)
H22	0.6845	0.5562	0.7010	0.050*
C23	0.7791 (6)	0.5861 (3)	0.7997 (2)	0.0776 (15)
H23A	0.8320	0.6335	0.8215	0.116*
H23B	0.8467	0.5378	0.8002	0.116*
H23C	0.6869	0.5739	0.8281	0.116*
C24	0.8755 (5)	0.6246 (3)	0.6743 (3)	0.0844 (16)
H24A	0.8422	0.6378	0.6243	0.127*
H24B	0.9424	0.5761	0.6732	0.127*
H24C	0.9310	0.6718	0.6948	0.127*
Atomic displacement	nt parameters $(Å^2)$			

 U^{11} U^{22} U^{33} U^{12} U^{13} U^{23}

01	0.0484 (13)	0.0439 (12)	0.0411 (12)	0.0026 (11)	-0.0065 (11)	0.0066 (10)
O2	0.0405 (12)	0.0506 (13)	0.0300 (10)	0.0006 (11)	-0.0022 (9)	-0.0072 (9)
O3	0.0451 (13)	0.0420 (12)	0.0511 (13)	-0.0068 (11)	0.0038 (11)	0.0067 (11)
O4	0.0329 (12)	0.0489 (14)	0.118 (2)	-0.0080 (12)	-0.0183 (15)	0.0253 (16)
O5	0.0635 (17)	0.0629 (16)	0.0634 (16)	-0.0149 (15)	-0.0060 (14)	-0.0204 (14)
O6	0.0537 (13)	0.0434 (12)	0.0330 (11)	-0.0086 (11)	0.0053 (10)	0.0030 (10)
O7	0.0539 (15)	0.0556 (14)	0.0627 (15)	0.0180 (13)	-0.0205 (13)	-0.0142 (13)
08	0.0473 (14)	0.0269 (11)	0.0851 (18)	0.0032 (10)	-0.0039 (13)	-0.0033 (11)
N1	0.0307 (12)	0.0323 (12)	0.0326 (12)	0.0003 (10)	-0.0055 (11)	-0.0018 (10)
N2	0.0396 (13)	0.0315 (12)	0.0275 (11)	-0.0055 (11)	0.0016 (11)	-0.0014 (9)
C1	0.0308 (15)	0.0336 (14)	0.0364 (15)	-0.0043 (12)	0.0052 (12)	0.0009 (12)
C2	0.0434 (18)	0.0398 (17)	0.064 (2)	-0.0004 (15)	0.0038 (17)	-0.0098 (16)
C3	0.050 (2)	0.0391 (19)	0.088 (3)	0.0081 (16)	0.001 (2)	0.005 (2)
C4	0.056 (2)	0.052 (2)	0.064 (2)	0.0095 (19)	-0.009 (2)	0.0203 (19)
C5	0.0282 (13)	0.0360 (14)	0.0272 (13)	-0.0068 (12)	0.0046 (11)	-0.0013 (11)
C6	0.0302 (14)	0.0325 (14)	0.0370 (14)	-0.0032 (12)	-0.0031 (12)	0.0015 (13)
C7	0.0349 (15)	0.0322 (15)	0.0474 (18)	-0.0032 (13)	-0.0032 (15)	-0.0024 (13)
C8	0.036 (2)	0.067 (3)	0.134 (4)	-0.012 (2)	-0.009 (3)	0.008 (3)
C9	0.0315 (14)	0.0312 (14)	0.0409 (16)	-0.0003 (12)	0.0053 (13)	0.0010 (13)
C10	0.0330 (15)	0.0303 (14)	0.0443 (16)	-0.0028 (13)	0.0009 (13)	0.0020 (12)
C11	0.056 (2)	0.055 (2)	0.0502 (19)	-0.0210 (19)	-0.0034 (18)	0.0124 (17)
C12	0.061 (2)	0.0374 (17)	0.056 (2)	-0.0111 (17)	0.0045 (18)	-0.0041 (16)
C13	0.0312 (14)	0.0315 (14)	0.0410 (16)	0.0014 (12)	0.0004 (13)	0.0043 (12)
C14	0.046 (2)	0.070 (3)	0.084 (3)	0.0039 (19)	0.006 (2)	0.039 (2)
C15	0.0416 (19)	0.0365 (18)	0.106 (3)	-0.0111 (16)	-0.013 (2)	-0.001 (2)
C16	0.066 (3)	0.062 (3)	0.095 (3)	-0.019 (2)	-0.010 (3)	-0.020 (3)
C17	0.0326 (14)	0.0294 (13)	0.0322 (14)	0.0040 (12)	0.0036 (12)	0.0036 (12)
C18	0.0375 (15)	0.0261 (13)	0.0288 (13)	-0.0025 (12)	-0.0011 (12)	0.0007 (11)
C19	0.0389 (15)	0.0344 (15)	0.0352 (14)	0.0021 (13)	0.0013 (14)	0.0018 (12)
C20	0.066 (3)	0.0301 (16)	0.092 (3)	0.0137 (17)	0.007 (2)	0.0027 (18)
C21	0.0403 (16)	0.0269 (13)	0.0394 (15)	-0.0041 (12)	0.0001 (13)	-0.0010 (12)
C22	0.0374 (16)	0.0318 (14)	0.0548 (19)	0.0011 (13)	0.0017 (15)	-0.0077 (14)
C23	0.077 (3)	0.083 (3)	0.073 (3)	0.045 (3)	-0.029 (2)	-0.012 (2)
C24	0.059 (3)	0.067 (3)	0.127 (4)	0.006 (2)	0.041 (3)	-0.010 (3)

Geometric parameters (Å, °)

O1—C1	1.362 (4)	C10—C12	1.517 (4)
O1—C4	1.362 (4)	C10-C11	1.521 (4)
O2—C5	1.233 (3)	C10—H10	1.0000
O3—C7	1.193 (4)	C11—H11A	0.9800
O4—C7	1.335 (4)	C11—H11B	0.9800
O4—C8	1.453 (5)	C11—H11C	0.9800
O5—C16	1.329 (5)	C12—H12A	0.9800
O5—C13	1.377 (4)	C12—H12B	0.9800
O6—C17	1.230 (3)	C12—H12C	0.9800
O7—C19	1.194 (4)	C13—C14	1.359 (5)
O8—C19	1.337 (4)	C13—C17	1.478 (4)
O8—C20	1.446 (4)	C14—C15	1.474 (5)

N1—C5	1.342 (4)	C14—H14	0.9500
N1—C6	1.444 (4)	C15—C16	1.307 (6)
N1—H1	0.8800	C15—H15	0.9500
N2—C17	1.342 (4)	C16—H16	0.9500
N2—C18	1.441 (4)	C18—C19	1.520 (4)
N2—H2	0.8800	C18—C21	1.531 (4)
C1—C2	1.353 (4)	C18—H18	1.0000
C1—C5	1.465 (4)	C20—H20A	0.9800
C2—C3	1.417 (6)	C20—H20B	0.9800
C2—H2A	0.9500	С20—Н20С	0.9800
C3—C4	1.315 (6)	C21—C22	1.520 (4)
С3—Н3	0.9500	C21—H21A	0.9900
C4—H4	0.9500	C21—H21B	0.9900
C6—C7	1.524 (4)	C22—C23	1.499 (5)
С6—С9	1.532 (4)	C22—C24	1.530 (5)
С6—Н6	1.0000	С22—Н22	1.0000
C8—H8A	0.9800	C23—H23A	0.9800
C8—H8B	0.9800	С23—Н23В	0.9800
C8—H8C	0.9800	С23—Н23С	0.9800
C9—C10	1.527 (4)	C24—H24A	0.9800
С9—Н9А	0.9900	C24—H24B	0.9800
С9—Н9В	0.9900	C24—H24C	0.9800
C1—O1—C4	105.6 (3)	C10—C12—H12B	109.5
C7—O4—C8	116.2 (3)	H12A—C12—H12B	109.5
C16—O5—C13	109.1 (3)	C10—C12—H12C	109.5
C19—O8—C20	116.1 (3)	H12A—C12—H12C	109.5
C5—N1—C6	118.4 (2)	H12B—C12—H12C	109.5
C5—N1—H1	120.8	C14—C13—O5	109.7 (3)
C6—N1—H1	120.8	C14—C13—C17	130.5 (3)
C17—N2—C18	122.3 (2)	O5-C13-C17	119.7 (3)
C17—N2—H2	118.9	C13—C14—C15	102.5 (3)
C18—N2—H2	118.9	C13—C14—H14	128.7
C2—C1—O1	110.3 (3)	C15—C14—H14	128.7
C2—C1—C5	130.5 (3)	C16—C15—C14	109.4 (3)
O1—C1—C5	119.2 (3)	C16—C15—H15	125.3
C1—C2—C3	105.8 (3)	C14—C15—H15	125.3
C1—C2—H2A	127.1	C15—C16—O5	109.2 (4)
С3—С2—Н2А	127.1	С15—С16—Н16	125.4
C4—C3—C2	107.0 (3)	O5—C16—H16	125.4
С4—С3—Н3	126.5	O6—C17—N2	123.6 (3)
С2—С3—Н3	126.5	O6—C17—C13	120.2 (3)
C3—C4—O1	111.4 (3)	N2-C17-C13	116.1 (2)
C3—C4—H4	124.3	N2-C18-C19	110.5 (2)
O1—C4—H4	124.3	N2-C18-C21	112.4 (2)
O2—C5—N1	122.0 (3)	C19—C18—C21	108.8 (2)
O2—C5—C1	120.1 (3)	N2—C18—H18	108.3
N1—C5—C1	117.9 (2)	C19—C18—H18	108.3
N1—C6—C7	110.1 (2)	C21—C18—H18	108.3
N1—C6—C9	111.2 (2)	O7—C19—O8	124.0 (3)

С7—С6—С9	108.8 (2)	O7—C19—C18	125.9 (3)
N1—C6—H6	108.9	O8—C19—C18	110.1 (2)
С7—С6—Н6	108.9	O8—C20—H20A	109.5
С9—С6—Н6	108.9	O8—C20—H20B	109.5
O3—C7—O4	124.6 (3)	H20A—C20—H20B	109.5
O3—C7—C6	125.8 (3)	O8—C20—H20C	109.5
O4—C7—C6	109.6 (2)	H20A—C20—H20C	109.5
O4—C8—H8A	109.5	H20B—C20—H20C	109.5
O4—C8—H8B	109.5	C22—C21—C18	115.0 (2)
H8A—C8—H8B	109.5	C22—C21—H21A	108.5
O4—C8—H8C	109.5	C18—C21—H21A	108.5
H8A—C8—H8C	109.5	C22—C21—H21B	108.5
H8B—C8—H8C	109.5	C18—C21—H21B	108.5
С10—С9—С6	115.7 (2)	H21A—C21—H21B	107.5
С10—С9—Н9А	108.4	C23—C22—C21	112.9 (3)
С6—С9—Н9А	108.4	C23—C22—C24	112.2 (4)
С10—С9—Н9В	108.4	C21—C22—C24	108.9 (3)
С6—С9—Н9В	108.4	C23—C22—H22	107.6
Н9А—С9—Н9В	107.4	C21—C22—H22	107.6
C12—C10—C11	110.4 (3)	C24—C22—H22	107.6
C12—C10—C9	108.6 (3)	C22—C23—H23A	109.5
C11—C10—C9	111.6 (3)	C22—C23—H23B	109.5
С12—С10—Н10	108.7	H23A—C23—H23B	109.5
C11—C10—H10	108.7	C22—C23—H23C	109.5
С9—С10—Н10	108.7	H23A—C23—H23C	109.5
C10-C11-H11A	109.5	H23B—C23—H23C	109.5
C10—C11—H11B	109.5	C22—C24—H24A	109.5
H11A—C11—H11B	109.5	C22—C24—H24B	109.5
C10—C11—H11C	109.5	H24A—C24—H24B	109.5
H11A-C11-H11C	109.5	C22—C24—H24C	109.5
H11B-C11-H11C	109.5	H24A—C24—H24C	109.5
C10-C12-H12A	109.5	H24B—C24—H24C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N1—H1····O6 ⁱ	0.88	2.16	2.994 (3)	159
N2—H2…O2	0.88	2.00	2.847 (3)	162
N2—H2…O5	0.83	2.42	2.751 (4)	105
Symmetry codes: (i) $-x+1/2, -y+1, z-1/2$.				

Fig. 1

